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The large-amplitude rectilinear ‘ slow-drift ’ oscillation of a floating body constrained 
by a weak restoring force in random waves is considered. The free-surface flow is 
approximated by a perturbation series expansion for a small slow-drift velocity and 
wave steepness. A model slow-drift equation of motion is derived, the time- 
dependent slow-drift excitation force and wave damping coefficient are defined and 
the complete series of free-surface problems governing their magnitude are 
formulated. The free-surface problem governing the wave-drift damping coefficient 
in monochromatic waves is studied and an explicit solution is obtained for a vertical 
circular cylinder of infinite draught. This solution is extended for arrays of vertical 
circular cylinders by employing an exact interaction theory. The wave-drift damping 
coefficient is evaluated for configurations of interest in practice and an expression is 
derived for the steady drifting velocity of an unconstrained body in regular waves. 

1. Introduction 
Compliant offshore structures floating in ambient waves may undergo large- 

amplitude ‘ slow-drift ’ oscillations about their mean position when constrained by 
weak restoring forces. The modelling and prediction of such excursions is of evident 
importance for the design of the structure subsystems (i.e. mooring lines, risers, 
tethers) and have been the subject of a number of theoretical studies. 

The characteristic period of ‘ slow ’ horizontal oscillations of offshore structures 
constrained by mooring or tether systems is typically large relative to the period of 
the ‘fast’ oscillatory responses induced by linear wave effects and restored by 
hydrostatic forces. This disparity of periods suggests the study of the slow-drift 
oscillation problem under the assumption that the slow-drift velocity of the structure 
is small compared to the phase velocity of the ambient waves. This approximation 
allows the formulation and solution of the linear and second-order free surface 
problems governing the slow-drift oscillation problem in the frequency domain, 
independently of the position of the structure. The magnitude of the corresponding 
wave forces in the time domain may then be obtained from the summation of the 
respective linear and quadratic time series. 

Considerable effort has therefore been devoted to the theoretical study of the 
interaction of linear surface waves with three-dimensional structures undergoing a 
flow forward translation. Huijsmans k Hermans (1985) considered the forward 
motion of a ship and carried out a perturbation expansion of the forward-speed free- 
surface problem for small values of the parameter 7 = wU/g ,  where w is the wave 
frequency and g the gravitational acceleration. The zero-speed problem was solved 
with a standard panel method using the wave source potential as the Green function. 
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The leading-order forward-speed problem was then treated by the derivation of an 
explicit surface Green function correct to o(7). This approach was further pursued by 
Wu & Eatock Taylor (1990) in two dimensions and by Nossen, Grue & Palm (1991) 
for three-dimensional offshore structures. The latter study suggests the evaluation of 
the wave-drift coefficient in regular waves from a momentum conservation principle, 
which enjoys the computational benefits of analogous expressions for the drift forces 
in the zero-speed problem. 

Zhao & Faltinsen (1988, 1989) considered the direct enforcement of the forward- 
speed free-surface condition by employing a Rankine panel method. This approach 
allows the inclusion of forward-speed effects of o(7') which may become important 
when a strong current is present. The relative importance of forward-speed effects of 
o(7) and O(7') was investigated by Hermans (1991) for a vertical circular cylinder 
advancing in short waves. A ray theory was developed including all forward-speed 
effects and computations were carried out of the mean horizontal force. They suggest 
that effects of o(7) may offer a good approximation of forward-speed effects even for 
values of 7 which are not small. 

In  practice, the slow-drift oscillations of offshore structures occur in random short- 
crested waves. Current slow-drift oscillation models are based on the evaluation of 
the steady-state drift forces and wave-drift damping coefficients in monochromatic 
waves coupled with Newman's approximation for narrowband unidirectional wave 
spectra. When the wave energy is broadly distributed over the frequency axis and 
angular direction, important second-order wave effects contribute to the magnitude 
of the slow-drift excitation and wave-drift damping coefficients. The formulation of 
all linear and second-order free-surface problems governing the slow-drift excitation 
and damping forces is carried out in $2, under the assumption of a small slow-drift 
velocity and wave steepness. The solution of the second-order ' difference-frequency ' 
problem for the slow-drift excitation force, has been considered in a number of 
studies (Faltinsen 1990), however, the corresponding problem governing the slow- 
drift damping has not yet been considered for three-dimensional structures. In  
broadband wave spectra, the solution of these second-order problems is expected to 
contribute significantly to the respective forces, yet the associated computational 
effort may be formidable. Therefore, accurate and efficient solutions for simplified 
geometries like arrays of vertical cylinders, would be valuable in practice and would 
also serve as benchmarks for future computations for bodies of arbitrary geometry. 

An ordinary differential equation governing the rectilinear slow-drift oscillation of 
a body in the time domain is derived in 52.2. The assumption of a small value of 7 

leads to an important simplification. It allows the apriori evaluation of the slow-drift 
excitation and wave-drift damping quadratic transfer matrices in the frequency 
domain, independently of the slow-drift offset of the structure. Important viscous 
and nonlinear restoring effects may be added to the slow-drift equation without 
affecting this property. 

In $3  the solution of the free-surface problem governing the diagonal terms of the 
wave-drift damping transfer matrix is Considered. The mathematical geometry of a 
single vertical circular cylinder of infinite draught is considered first. The solution of 
the zero-speed diffraction problem is given by the classical McCamy and Fuchs 
solution. An analogous closed-form solution is derived in 53.1 for the leading 
forward-speed problem by combining the method of separation of variables with the 
use of the Weber transform. 

The study of arrays of vertical circular cylinders is considerably more interesting 
in applications owing to their resemblance to  the geometry of semi-submersible and 
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tension-leg offshore platforms. Linton & Evans (1990) derived an elegant extension 
of the zero-speed McCamy and Fuchs single-cylinder solution to an arbitrary spacing 
of vertical cylinders. Their method is extended in $3.2 to the solution of the leading- 
order forward-speed problem and is combined with the techniques used for the case 
of a single cylinder. In $4 an expression is derived for the wave-drift damping 
coefficient based on the momentum conservation principle. It requires the use of only 
the far-field wavelike form of the free-surface disturbance and its properties are 
analogous to the corresponding expression for the zero-speed horizontal drift forces 
and yaw moment. In $5 this expression is employed for the evaluation of the drift 
damping coefficient of a rectangular configuration of vertical circular cylinders corre- 
sponding to the geometry of a realistic offshore structure advancing in regular waves. 

In monochromatic waves, the mean horizontal drift force and drift damping 
coefficients may be combined to estimate the mean drifting velocity of an 
unconstrained floating body. Such an expression is derived in $6, under the 
assumption that the drifting velocity is small. Employing the drift force and 
damping coefficients computed for the vertical cylinders it was found that a negative 
mean drifting velocity is possible for cylinder arrays but not for a single cylinder. 

2. Mathematical formulation 
Consider the interaction of gravity waves with a floating body undergoing a 

rectilinear slow-drift oscillation with velocity U(t)  along the positive X-axis of an 
inertial coordinate system (X, Y, Z ) ,  with X, Yon the calm free surface and the Z-axis 
pointing upwards. A coordinate system fixed on the body is related to the inertial 
system by the transformation (z, y, z) = (X-X,(t), Y, Z ) ,  where U(t) = dX,/dt. 
Assume irrotational flow and introduce a velocity potential @(X, t )  satisfying the 
Laplace equation and the nonlinear free-surface condition : 

dv@+p@.v(v@.v@) = 0 
d2@ 
dt2 dt 
- + gGz + 2V@. - 

enforced on the exact position of the free surface z = [(X, Y ,  t)  defined by 

where g is the acceleration due to gravity and all time derivatives are understood 
with respect to the inertial frame. The Laplace equation and free-surface condition 
(1)-(2) must be supplemented by a prescribed normal velocity at  the instantaneous 
position on the body boundary: 

n.V@ = n. V,, (3) 

where n is a unit normal vector pointing out of the fluid domain and & is the velocity 
of the body boundary. Finally, the flow velocity must vanish as Z +  co. The 
hydrodynamic pressure in the fluid domain is supplied by the Bernoulli equation, 

p = - p  -++V@.V@+gZ , (Z 1 (4) 

where p is the water density. 
Let #(x, y, z, t) = @(X, Y, 2, t )  be the velocity potential with respect to the body- 
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fixed coordinates. Time derivatives between the two coordinate systems are related 
by the Galilean transformation 

The substitution of $ ( x , t )  = @(X, t )  and ( 5 )  in (1)-(3) allows us to express the 
boundary-value problem with respect to the body-fixed coordinates for arbitrary 
W). 

Two independently small parameters are introduced, the characteristic wave slope 
S and the forward-speed parameter 70 = Uoo/g,  where oo is a typical wave frequency 
of O(1). Small values of 70 correspond to a velocity U small relative to the phase 
velocity g/wo of the wave. The characteristic frequency of the slowly varying motion 
is an order of magnitude smaller than o,, and terms proportional to dU/dt are 
therefore neglected in the following analysis. 

Assume the existence of a perturbation series expansion for the velocity potential 
and the wave elevation, 

$(x,t) = $Ol(X,t)+$lo(X,t)+$11(X, t )+$20(X, t )+$2 l (X , t )+ . . . ,  (6) 

c(x,YIt) = ~ l O ( ~ , Y I ~ ) + 5 l 1 ( ~ , Y , ~ ) + ~ 2 O ( ~ , Y , ~ ) + 5 2 , ( ~ , Y , ~ ) + . . .  . (7) 

o k ,  
v - + c  

O(70) O(8) O(67,) 

' Oi87 ' OCdBz,, - -  
0 (8) O(870) 

The first index in the velocity potentials and wave elevations corresponds to 6 and 
the second to 70. We assume that 6 and 70 are independently small, and will neglect 
terms of order higher than S2r0. A Taylor expansion of the right-hand side of (2) 
about the z = 0 plane and substitution of (6) and (7) in both sides of the equation, 
leads to the following definition for the two first wave elevations I&: 

In  these expressions the double-body flow potential $ol includes the uniform stream 
component - Ux. A similar Taylor series expansion of the free-surface condition (1) 
combined with the Galilean transformation (6) and the wave elevations (8), (9) leads 
to a sequence of free-surface boundary conditions for the velocity potentials q5$, 
applied on the z = 0 plane: 
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-+g-=  a t 2  ax -~v$ol.v(v$lo.v),,)-v$lo.v(sb.,.v$lo-2u~) ax 

The double-body potential $ol is the leading-order approximation for the steady flow 
for small 7,; and $11 are linear in 6 and represent the zero-speed potential and its 
leading forward-speed correction, respectively. In  order to compute the hydro- 
dynamic force and responses of the body consistently to o(8270), we also need to 
solve for $zo and $zl, which are the second-order equivalents of $lo and $ll. 

The free-surface conditions (lo)-( 14) must be supplemented by a corresponding 
sequence of boundary conditions satisfied by the velocity potentials $(, on the body 
boundary. In this study the body will be assumed fixed relative to the translating 
frame, therefore all body-boundary conditions take the form 

an on the body wetted surface. 

2.1. The hydrodynamic forces 
From Bernoulli's equation and the expansion (6) for $(x , t ) ,  it follows that the 
pressure in the fluid domain may be expanded in the form 

P(X, t )  = P,O(X)  +P,,(X, t )  +PlO(X, t )  +Pll(x,t)+P,o(x, t )  +P, lk  t )  + . ' * )  (16) 

oip) ' 
- - L . . C J - \  
o m  o(70) O(8) O@T,) 

where poo is the hydrostatic, p,, the linear pressure, and pol the pressure due to the 
double body flow. The remaining components are defined by the relations 

P,, = - P  [";; -+2v$10.v~10]~ 1 

The hydrodynamic force experienced by the body may be obtained by integration of 
p ,  over its wetted surface or by the appropriate enforcement of the momentum 
conservation principle. It follows that the corresponding expansion of the force on 

(20) 
the body becomes F(t) = F,,(t)+F,,(t)+F,,(t)+F,,(t)+ ... . 

Pressure integration yields the definitions 

F,#) = ( S g P d t )  rids, 
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where the hydrodynamic pressure and wave elevation components have been defined 
above. # and WL are the mean wetted body surface and its intersection with z = 0, 
respectively. 

In undirectional random gravity waves obeying the Gaussian model, the linear and 
second-order forces assume the following representations : 

F!,(t, X, = Re c c A: g2i(wk, w Z )  exp [i(wk - wl)t - i( vk - v Z )  x(t)] 7 ( 25) 
k Z  

where i = 0, 1 for the zero and forward-speed components respectively, vk = w i / g  
and the summations are over arrays of discrete wave frequencies. The complex wave 
amplitudes A, have a random phase uniformly distributed in (-IT, IT) and a modulus 
defined by the ambient wave spectrum. The complex force transfer functions %= are 
obtained from the solution in the frequency domain of the boundary-value problems 
for q5$, formulated in this section. Expressions (24) and (25) also account for the 
phase variation of the linear and second-order forces due to the offset X(t) of the 
structure from its mean position. 

The second-order force defined by (25) includes only the ‘ difference-frequency ’ 
component which is responsible for the slow-drift oscillations of floating structures. 
The corresponding ‘ sum-frequency ’ component is omitted since it contains little 
energy in the frequency range where slow-drift oscillation occur. 

2.2. A model slow-drift equation of motion 
Consider the case of a body undergoing a rectilinear slow-drift oscillation excited by 
ambient waves and restrained by a linear restoring mechanism. Including only ideal 
fluid effects and assuming for simplicity that the body is fixed at its mean translating 
position, we obtain from Newton’s law 

where M is the body mass, A its added mass in the direction of translation obtained 
from the solution of the double-body flow and C is a linear restoring coefficient. By 
definition, the second-order force Fz1 depends linearly on 70 therefore we may set 
F21 = -Xo(t)B(t,X) and reduce the slow-drift equation of motion to  the form 

( M + A )  ___ d2XO(t) dt2 +B(t,X)=+cx,(t) dt = FZ0( t ,X) .  

The force coefficients B(t,X), F,,(t,X) are known as the slow-drift ‘damping’ and 
‘excitation ’ mechanisms supplied by the ambient random waves. Both are second- 
order quantities accepting representations analogous to (25), therefore the wave-drift 
damping force coefficient may be cast in the form 

B(t ;X) = Re C AkA: g ( w k ,  w l )  exp [i(wl, - w2)t  - i( vk - v,)X(t)]. (28) 
k 2  

The computational effort necessary for the evaluation of the quadratic transfer 
matrices P 2 J w k ,  w z ) ,  W(w, ,  w z )  for three-dimensional geometries would be formidable. 
Therefore, Newman’s approximation for narrowbanded wave spectra is widely used. 
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According to this approximation the slow-drift excitation force and damping 
coefficients may be approximated in terms of the diagonal elements of the 
corresponding quadratic transfer matrices, F z o ( w k ,  w t )  and B ( w k ,  w ! ) .  The com- 
putation of the off-diagonal elements of Fz0 has been considered in a number of 
studies (Faltinsen 1990), yet no study has yet attempted the evaluation of the off- 
diagonal elements of the drift-damping quadratic transfer matrix a for three- 
dimensional bodies. 

In  particular, Fz0(w, w )  is the steady-state drift force exerted upon the body by a 
unit-amplitude regular wave of frequency w and may be obtained in terms of the 
linear velocity potential The corresponding quantity B ( w , w )  is known as the 
wave-drift damping coefficient and represents the leading-order forward speed 
correction to the drift force in regular waves. It may be determined in terms of the 
linear velocity potentials &, the solution of the double-body flow q501 and of the 
second-order potential g520 at the zero value of the difference frequency. The complete 
definition of the slow-drift excitation and damping forces requires the evaluation of 
the second-order potentials g5zo and for finite values of the difference frequency, 
as may be inferred from the corresponding pressure components pz0 and p, ,  defined 
by (18) and (19), respectively. 

The present study concentrates upon the evaluation of the wave-drift damping 
coefficient B ( w ,  w )  in the diffraction problem. An explicit solution will be derived for 
q511, and will be combined with a momentum conservation theorem to evaluate the 
wave-drift damping coefficients of a single and multiple vertical circular cylinders. 

3. Explicit solution for #11 for vertical circular cylinders 
3.1. A single cylinder 

In this section, explicit solutions will be derived for the velocity potential g511 for 
circular cylindrical body geometries intersecting the free surface at  right angles. This 
solution will be obtained in the frequency domain and will be used to derive 
expressions for the wave-drift damping coefficient B(w, w )  for a single and multiple 
circular cylinders. 

Consider a body with a vertical, circular cylindrical geometry of infinite draught 
advancing in the positive x-direction with velocity U .  The body is assumed fixed at 
its mean translating position and is otherwise free to interact with ambient regular 
waves of absolute frequency wo and direction p relative to the positive x-axis. The 
linearized wave disturbance governed by the velocity potentials and g511 will be 
time harmonic, thus we may set 

9&, t )  = Re{v(x) eiwtl, 

911(x, t )  = 7 0  Re{W)  eiwtl, 

(29) 

(30) 
where the frequency of encounter is defined by w = wo-vUcos,8. Upon substitution 
in the free-surface conditions (1 1) and (12) and use of the relation a/at = iw, it follows 
that on z = 0 

-v+v ,  = 0, (31) 

- v $ + $ ~  = - ~ ~ V ~ * V P , - ~ V C O S ~ ,  (32) 
where v = w i / g .  The second term in the inhomogeneous free-surface condition for the 
potential $ accounts for forward-speed effects contained in the frequency of 
encounter w.  Earlier studies have elected to treat this effect by including it in the 
frequency of encounter at  which the above boundary-value problems have been 
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solved. The present approach allows the complete decoupling of zero from forward- 
speed effects which is very desirable in the formulation and solution of the slow-drift 
equation of motion. 

For the cylindrical bodies of infinite draught, there is no z-variation in the double- 
body flow, which is normalized as follows : $ol = U 6 ( x ,  y) = - U(x- @), For a single 
circular cylinder the disturbance potential 6 is that of a dipole: 

- a 2  

r 
$ = --cose, (33) 

where ( q y )  = r(cos9,sinB). The condition of zero normal velocity for the double- 
body and diffraction potentials on the body surface S yields 

_- -  -=-- - 0. 
a 6  ap a@ 
an an an (34) 

The determination of @ can be decomposed into a sequence of problems. The leading- 
order forward-speed potential @ is written as the sum of the individual potentials 
$g and @3, subject to the following boundary conditions on z = 0 and on the circular 

boundary : - 

The solution to problem (35) may be obtained by inspection of the free-surface 
condition (31). The velocity potential 

@l(x,y,z) = 2 1--vcosp - )% 
may be verified to satisfy the Laplace equation and the two equations in (35), here 
w(z) is given by 

w(z) = 2  (39) 

The zero-speed potential Q, has been decomposed into the diffraction potential Q , ~  and 
the incident wave potential Q , ~ .  The latter has been omitted from the solution for Q , ~  

since its contribution satisfies the homogeneous free surface condition in (35) and is 
therefore not a desired solution. The total zero-speed potential q, known as the 
McCamy and Fuchs solution, 

(40) 

where J, ,  Hg) are the Bessel and Hankel functions, respectively, and the summation 
is over all integers rn. 

The determination of @ 2  and @3 is simplified if only their far-field components are 
needed. This will be the case if conservation of momentum is used as in 54 in order 
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to evaluate the wave-drift damping coefficient. Therefore, the remainder of this 
section seeks to determine the wavelike components of the potentials $ which are 
dominant in the far field. 

The far-field wave component of the ‘radiation’ potential of $12 admits the Fourier 
decomposition, 

The unknown complex coefficients am may be determined in terms of the velocity v(z) 
induced by on the cylinder, by employing Havelock’s wavemaker theory. The 
result is 

o m  
a m = -  J dz vm(z) euz, 

Hg”(va) --oo 

where v(z )  = E m  vm(z)  eime. 
In  order to solve (37) we first expand $3 in the Fourier series 

$3 = C $3m eime, 
m 

and invoke the Weber transform pair for $3m (Davies 1978)’ 

6 3 m ( k )  = $Tdr$am(r) Wm(kr), 

(43) 

(44) 

where Wm(kr) = Ym(ka) Jm(kr) -Jm(ku) Ym(kr). (46) 
The Weber transform exists here due to the rapid decay of V$as r+w.  This would 
not be the case with (35) because of the l / r i  decay of the forcing term in the free- 
surface condition. The transformation of the Laplace equation, free-surface condition 
and the body boundary condition for $3, leads to the following set of equations for 
637n(k): 

6 3 m r  = 0 9  (49) 
where E(k) = xmpm(k) eime is the Weber transform of the right-hand side of the first 
equation in (37). The solution for $3m follows upon substitution of the solution for 

into (45), 

with the path integration intended above the pole at k = v. The identity 

allows the deformation of the contour of integration in the upper/lower k-plane for 
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Cylinder j 

FIGURE 1. Definition of parameters for an array of cylinders. 

the first/second terms in (51). As r - tm,  the wavelike contribution to $3m arises from 
the residue a t  k = v, and takes the form 

which represents outgoing waves satisfying the homogeneous free-surface condition. 
The far-field wavelike solutions for $2 and $3 given by (41) and (52) will later be 
combined with defined by (38) in order to  evaluate the wave-drift damping using 
a momentum conservation principle. 

The determination of the second-order potential &, at  zero difference frequency 
is not necessary when the wave drift damping is determined from a far-field 
momentum conservation method. I n  the diffraction problem studied here, this value 
of $20 may actually be shown to be zero. This follows from the vanishing of the 
forcing term in the second-order free-surface condition (13) due to  the exponential 
decay with depth of the zero-speed diffraction potential around a vertical cylinder. 

3.2. Arrays of vertical cylinders 

Several floating structures encountered in practice consist of vertical circular legs 
piercing the free surface. Therefore, the extension of the results for the single cylinder 
to arrays of cylinders would be valuable in applications. 

An elegant extension of the McCamy and Fuchs solution to  an array of N 
arbitrarily spaced circular cylinders was derived by Linton & Evans (1990). The total 
diffraction velocity potential in the vicinity of cylinder j was expressed in the form 

igA e”’C A&[Z& Hg)(vr,) - Jm(vr,)] eimej, $=o, (53) 

where (r,,  0,) are the local radial and angular coordinates centred a t  the j t h  cylinder, 
as shown in figure 1 and Sm = Jm(va,)/H$’(va,). The complex coefficients A’, 
account for the hydrodynamic interaction between the cylinders and are determined 
from the solution of a linear system of equations obtained from the enforcement of 
the boundary condition on each cylinder : 

A: + 
N M  

A! 2; exp [i(lz-m)a,,] H ~ l m ( ~ R , k )  = - I ,  exp [ -im(n/2 + p ) ] ,  
3-1 n--M + 
+ k  k = 1 ,..., N ,  m = -M ,..., M (54) 
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where I ,  = exp [ - iv(x, cos /3+ y ,  sin /3)] is the phase factor associated with cylinder k. 
The geometrical parameters ajr, R,, and ( x r , y k )  are defined in figure 1.  The infinite 
series corresponding to that in (53) has been truncated to  (2M+1) terms. 

The exact double-body velocity potential 6 for an array of cylinders corresponds 
to a uniform flow past an array of circles in two dimensions. For the cylinder spacing 
encountered in practice, we may however ignore hydrodynamic interactions in 6, 
due to the rapid decay with r, of the quantity V 6  which enters the definition of the 
forward speed potential (32). Therefore, the steady velocity potential 6 in the 
vicinity of cylinder j is expressed its the sum of a uniform flow -x and the 
disturbance potential $* due to a dipole, defined by 

The forward-speed potentials $i, (i = 1,2,3)  are again subject to (35)-(37) and (39). 
Here, v, qD and 6 are replaced by r$, q9-d and $, respectively, where d is the 
incident wave potential expressed in terms of the local coordinates on cylinder j and 
the phase factor I,. The solution around each cylinder j may therefore be obtained 
by employing the method presented in $3.1 combined with an extension of the 
Linton-Evans interaction theory, which is derived next. 

around each cylinder may be determined easily by employing the 
coordinates on cylinder j and using the explicit relation (38). The v-derivative of r$ 
gives rise to a new set of coefficients, Hm = (a/av)Al,. They have been determined by 
taking the v-derivative of (54) and solving the resulting linear system of equations for 
B3,. An alternative approach would involve the use of numerical differentiation of the 
v-dependence of the coefficients A&. 

requires the 
determination of new sets of interaction coefficients, which will be discussed next. 
Consider the generalized radiation velocity potential 2, subject to the Laplace 
equation and the boundary conditions on z = 0 and on each cylinder j, respectively, 

The potential 

The determination of the wavelike components of $2 and 

-vx+xz = 0, (56) 
x r  = U W ,  (57) 

(58) 

where u’( z )  admits the Fourier decomposition 

d ( z )  = C u3,(z) eime5. 
m 

The solution of this boundary-value problem will next be carried out by extending 
the Linton-Evans interaction theory to the radiation problem. Only wavelike 
interactions between the cylinders will be accounted for, while interactions arising 
from the non-wavelike component of the radiation solution around each cylinder will 
be omitted. 

The potential x may be decomposed into two components. The first component is 
the sum of wave disturbances ‘radiated ’ from single cylinders acting as wavemakers, 
and is subject to the boundary condition (57) on cylinderj. This component is free 
of interaction effects and around cylinder j is defined by 

where 

A = 83, H$ (vr,) exp [ i d ,  + vz] , 
m 

n M 

(59) 
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The second component consists of the ‘ diffracted’ wave disturbance around cylinder 
j due to the waves ‘radiated’ by the other cylinders and may be expressed in the form 

where C; are unknown interaction coefficients and the complex constants 
been defined in (53). 

diffracted wave disturbances, or 

have 

The total potential x, may therefore be written as the sum of all radiated and 

The unknown interaction coefficients Ck may be determined by enforcing a 
homogeneous boundary condition on each cylinder for the velocity potential xl. 
Expressing x1 in terms of the coordinates of cylinder j requires the use of Grafs 
addition theorem for Bessel functions (Abramowitz & Stegun 1972, eqn. 9.1.79). 
Algebra analogous to that in Linton & Evans leads to the following system of 
equations for the coefficients Ck, : 

N M  

ck, + (~3,Z3, + p/,) exp [i(n - rn) a,,] HfLm (vR,,) = 0, 

k = 1 ,..., N ,  m = - M  ,..., M .  (63) 

Following the determination of the ‘radiation ’ interaction coefficients C k ,  Graf s 
addition theorem and equation (63) allow the total potential x around cylinder j to 
be expressed in the form 

2 = [ (Cj ,Z;+pl , )Hg)(vr , ) -Cj ,  Jm(vr,)]exp[irn8j+vz]. (64) 
m 

In the special case d ( z )  = cose,, equation (64) supplies the solution to the surge 
radiation problem of an array of vertical cylinders. The performance of this 
interaction theory which omits non-wavelike interactions between the cylinders is 
illustrated in figure 2. A square configuration of four cylinders corresponding to a 
realistic structure was considered with radii equal to a of their spacing. The surge 
added mass was determined using the interaction theory and was compared with 
exact computations using the three-dimensional panel method WAMIT. The 
agreement is very satisfactory and consistent with earlier interaction theories based 
on the same approximation. 

The solution for the forward-speed potential ~2 now follows easily from the 
derivation of x, by setting d ( z )  = -d(z) with d(z) given from the r-derivative of the 
solution for 

may be determined along similar lines as +2. It will 
also consist of a ‘radiated’ and a ‘diffracted’ component. The former may be 
determined as for the single cylinder by making use of the Weber transform. The 
governing equation and boundary conditions are given by (47)-(49). For cylinder j ,  
the right-hand side of (48) takes the form 

presented in this Section. 
The remaining potential 
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FIQURE 2. Added mass (solid line) for an array of four cylinders, with spacing 4 times the cylinder 
radius. The triangles represent the same quantities obtained by WAMIT. The analytic results do not 
include the interaction of evanescent modes. v = w i / g  is the wavenumber for infinite water depth 
and a is the cylinder radius. 

where 

Wk(kr,)  = Ym(kaj) Jm(krj)-Jh(ku,) Ym(krj). (67) 
The double-body velocity potential $5 is defined by (55) and the zero-speed 
diffraction solution p' is obtained from the Linton & Evans solution. 

The 'radiated ' wavelike component of $3 arises from the residue of the integral ; 
(50) and takes the form suggested by (52). On the surface of cylinderj it satisfies the 
boundary condition 

and on z = 0 it  is subject to the homogeneous free-surface condition. It follows that 
the wavelike component of $3 may be determined by employing the interaction 
theory derived in the present section for the generalized radiation potential x. For 
$3, the normal velocity to be enforced on cylinder j is given by u5(z) = $3,.. 

4. The wave-drift damping coefficient 
The second-order difference-frequency wave force experienced by a floating body 

in polychromatic waves has been defined by the double series (25) of 52.1. This article 
is concerned with the evaluation of the diagonal terms of the quadratic transfer 
matrix S 2 , ( w k , w , ) ,  obtained by setting wk = wt = w .  It follows from (25) that the 
corresponding terms in the series supply the mean value of the second-order force, 
defined as follows 

In monochromatic waves of frequency wo only one term survives in the series (69). 
For i = 0, it represents the mean drift force experienced by a stationary body, while 
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with i = 1 it denotes the leading-order forward-speed correction to the drift force 
when the body advances slowly in the positive x- direction. In  regular waves we may 
therefore set, with an error of O ( T ~ ) ,  

(70) 

where U is the velocity of the body, D(w,) is the drift force and B(w,) the drift 
damping coefficient. From the momentum conservation principle we may express the 
x-component of the drift force on the body as an integral over a control surface S,, 
which extends from the sea bottom up to the free surface and is fixed a t  some 
distance away from the translating position of the body. The drift force, correct to 
O(A2)  for an arbitrary velocity U ,  may be written as follows (Nossen et al. 1991): 

m t )  = IA12 Re [ 9 2 o ( w o )  + 9 2 1 ( 0 0 ) 1  = D(w0) - UB(@O), 

where S, is the control surface below z = 0. and c, is its intersection with z = 0. The 
subscripts x, n and t indicate the partial derivatives with respect to the respective 
variables. Using expansion (6), equation (29) and (30) for $ in (71),  and keeping terms 
linear in U ,  we obtain the following expression for the drift damping coefficient : 

(72) 
The analogous familiar definition of the drift force D(w,)  is 

For the single cylinder the complex velocity potentials to be used in (72) and (73) are 
given by 

(74) 

where a,, p,( u )  are defined in 3 3.1. 
For an array of cylinders, Q, is given by (53). The wavelike component of the 

fonvard-speed potential $ has been derived in $3.2. The non-wavelike disturbance 
decays rapidly a t  large distances from the cylinders and does not contribute to the 
wave-drift damping coefficient. 

Expression (72) extends the corresponding far-field expression for the zero-speed 
drift forces which have been found to be more attractive in numerical computations 
relative to the near-field pressure integration method. For bodies of arbitrary shape, 
the integration surface 8, may be removed to infinity and the drift forces may be 
obtained as simple azimuthal integrations of the Kochin functions, known as the 
Maruo-Newman expressions (see Maruo 1960 ; Newman 1967). An extension of these 
results to the wave-drift damping force have been derived in Nossen et al. (1991) for 
bodies of general shape. 

In  the present study an alternative approach will be followed based on the 
derivation of a mathematical conservation theorem for the wave-drift damping 
coefficient defined by (72). 



The slow-drift motion of arrays of vertical cylinders 45 

4.1. Conservation law for the drift damping coeficient 
Expression (72) will be shown to be in conservation form, i.e. its value does not 
depend on the position of the control surface S,. This will be shown to be the case 
for two arbitrary velocity potentials ip and $ subject to the free-surface conditions 

V z - y  = 0, 
$z-v$ = 2iip,-Bvcos&. 

(76) 
(77) 

Here it is important to note that all three wavelike components of $ satisfy (77). In 
particular, is subject to (77) while $2 and $3, as defined by (41) and (52), satisfy 
the homogeneous form of (77). 

We will use the following identity, valid for an arbitrary velocity potential $ over 

a closed surface S: r r  

where n, is the x-component of the unit vector n normal to S and pointing out of the 
enclosed domain. 

Apply now (78) to the potential q5 = p+$* over the surface S = Scl+Scl+S,, 
where Scl and Sc, are two vertical, neighbouring surfaces and S,  is the annular strip 
on z = 0 between the intersecting contours C, and C,. Assuming that the flow 
velocity vanishes a t  z = - 00, (78) may be rewritten in the form 

a ( i p x $ , *  +ipn $/,*-vip*V$*n,) = 0. (79) 

The integral over S,, where n, = 0, can be simplified using the free-surface conditions 
(76) and (77). The integrand on this surface may be reduced to the form 

(80) 
Taking the complex conjugate of the last two terms in (80) and applying the identity 
Re (2iipz97/,*) = 0, it follows that 

Re JJscl+sc*+sF 
ip, +: +ipz $/,* = ip,(v$* - 2iip/,* -2v cos&*) + I&-,*. 

= Re$ dl(ip$*-cos&q*)n,, (81) 
c,+cz 

where Stokes’ theorem has been used. A comparison of (72) with the identities (79) 
and (81) completes the proof of the conservation law for the drift damping coefficient. 

The position of the control surface S ,  in (72) may therefore be selected arbitrarily. 
It may for example be taken to coincide with the body surface, as long as only the 
wavelike components are included in the definition of the velocity potentials ip, +. All 
integrations suggested by (72) are carried out over the surface of each cylinder j by 
employing the explicit local wavelike solutions derived in $3. 

5. Wave-drift damping computations 
The method of conservation of momentum described in $4 has been used for the 

evaluation of the wave-drift damping coefficient for a single cylinder and an array of 
vertical cylinders of infinite draught. 

The x-component of the slow-drift damping coefficient B(w,) for a single cylinder 
is illustrated in figure 3 as a function of va, where v = oi/g is the wavenumber and 
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FIGURE 3. Slow drift damping coefficient for a single, vertical restrained cylinder. results are shown 
for different incident wave angles B relative to the positive z-axis: ,/3 = 0 (solid line), /3 = 46' (daah- 
dotted line) and B = 90' (dotted line). Comparison is made with Nossen et al. (1991) for B = 0 
(squares) and /3 = 90' (triangles). 
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FIGURE 4. Same as figure 3 but for an array of four equal vertical, restrained cylinders. The 
cylinders are centred at the corners of a square with side-lengths 7 times the cylinder radius. 

a the cylinder radius. The selected directions of the incident wave are /3 = 0' (along 
the positive x-axis), fi = 46' and /3 = 90' (along the positive y-axis). Comparison with 
the three-dimensional solution developed in Nossen et al. (1991) for bodies of general 
geometry is very satisfactory. 

Figure 4 is equivalent to figure 3 for an array of four cylinders. Each cylinder is 
centred at the corner of a square with side-lengths equal to 7 times the radius of each 
cylinder. Comparison with independent computations of the wave-drift damping 
coefficient by the method of Nossen et al. (1991, private communication) for the same 
rectangular arrangement of cylinders is very gratifying over a wide range of 
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FIGURE 5. Drift force D(o,) for a single, vertical restrained cylinder. The incident wave is for 
= 0. 

va 

FIGURE 6. Drift force D(o,) for an array of four cylinders (see figure 4). The incident waves are 
for B = 0 (solid line) and B = 46' (dash-dotted line). 

frequencies. A n  important difference between the two sets of results is that the three- 
dimensional computations were carried out for truncated cylinders with draught 
equal to three radii. The remarkable agreement suggests that the wave-drift 
damping coefficient appears to be dominated by near-surface wave effects. Moreover 
it confirms the usefulness of the multiple-cylinder solution in applications. An 
accuracy of the order was obtained for the array of cylinders by using M - 10 
when solving for the interaction coefficients A; and (7;. 

Figures 5 and 6 illustrate the zero-speed force D(o,) for the same geometries and 
incident wave directions as figures 3 and 4, respectively. Strong wave interactions 
between the cylinders are evident for the array of four cylinders, as opposed to the 
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more smooth curves for the single cylinder. Such interaction effects are seen to lead 
to a negative drift damping coefficient for some wavelengths while the drift force 
remains positive for all frequencies. In  particular, the negative drift damping seems 
to occur when the wavelength is approximately equal to the distance between 
cylinders in the direction of the propagation of the incident wave. 

6. Drifting velocity of a body in regular waves 
A body floating freely in regular waves will tend to drift in the direction of wave 

propagation. In  steady state and for incident waves propagating along a plane of 
symmetry of the body, it will undergo a rectilinear drifting translation with mean 
velocity U. From Newton’s law it follows that the mean force in the direction of 
translation must vanish. Therefore, it follows from (70) that to leading order for a 
small drifting velocity, U equals the ratio of the drift force to the drift damping 
coefficient, 

This estimate of the steady-state drifting velocity of an object in regular waves is 
apparently new. It suggests that its magnitude and sign may be affected significantly 
by the wave-drift damping coefficient. Moreover the ideal fluid theory used to derive 
(82) suggests that the drifting velocity of a body in regular waves is independent of 
their amplitude! The quadratic rate of increase of the drift force with the wave 
amplitude is counterbalanced by the same rate of increase of the wave-drift damping 
force which opposes the drifting translation for a positive drift damping coefficient. 
When no external force is present to absorb momentum flux, the balance of these two 
counteracting effects leads t o  a drifting velocity which is independent of the wave 
amplitude. 

A second interesting property of U is that it may become negative. The drift force 
D(wo) acting on a freely floating body is known to always point in the direction of wave 
propagation. For certain body geometries, the drift damping coefficient may 
however become negative over a certain frequency range. In such cases the object 
would tend to translate in a direction opposite to that of the wave propagation ! This 
is the case for an array of four circular cylinders over certain frequency intervals. 

Figure 7 illustrates the drifting velocity of a single cylinder as a function of va. Its  
positive magnitude indicates that the cylinder drifts in the direction of the wave 
propagation. The drifting velocity of the four-cylinder configuration is illustrated in 
figure 8. Over certain frequencies it may be seen to become negative owing to the 
negative sign of the corresponding wave-drift damping coefficient illustrated in figure 
4. Negative wave-drift damping coefficients were also computed in Nossen et al. 
(1991) for a realistic offshore structure including the effects of the body oscillations 
which have not been accounted for in the present study. Vanishing values of the 
wave-drift damping coefficient indicate that (at least to leading order in U )  the 
drifting motion of the body is unopposed by ideal fluid effects. Over such frequencies, 
the present model predicts large values for the drifting velocity which may isolate the 
small-U assumption. Moreover, viscous effects have not been included in the 
potential flow model which led to (82). They are likely to affect significantly the 
magnitude and perhaps the sign of drifting velocity observed in practice. 
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FIGURE 7. Drifting velocity of a single, vertical cylinder. The velocity is obtained for /3 = 0. Note 
that the drifting velocity U neither depends on the wave amplitude nor the cylinder radius for a 
given value of va. 
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FIQURE 8. Drifting velocity of an array of four cylinders (see figure 4). The velocity is obtained 

for /3 = 0. 

7. Concluding remarks 
The rectilinear slow-drift oscillation of a floating body constrained by a weak 

restoring force in random waves has been studied. Ideal fluid effects only were 
considered, and the nonlinear free-surface flow was reduced to a series of linear and 
second-order problems under the assumption of a small wave slope and a slow-drift 
velocity small relative to the wave phase velocity. An ordinary differential equation 
governing the slow-drift response was derived which allows the evaluation of the 
second-order quadratic transfer matrices in the frequency domain independently of 
the slow-drift response which may be determined in the time domain. 
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Body geometries consisting of a single and arrays of vertical circular cylinders were 
considered. Explicit expressions were derived for the wave-drift damping coefficient 
by employing the McCamy and Fuchs solution for the single cylinder, and an exact 
interaction theory for multiple cylinders. Computations of the wave-drift damping 
coefficient for a rectangular configuration of cylinders revealed an oscillatory 
dependence upon the wave frequency which leads to negative drift damping 
coefficients over frequency intervals where wave interactions are significant. 

A new expression has been derived for the drifting velocity of a body floating freely 
in regular waves. It was shown to be equal to the ratio of the drift force to the drift 
damping coefficient. Computations for a single cylinder restrained at its mean 
position suggested that its drifting velocity in regular waves points in the same 
direction as the direction of wave propagation. Analogous computations for a four- 
cylinder configuration suggested that a negative drifting velocity occurs over 
frequencies where wave interactions between the cylinders are strong. 

A future study of the hydrodynamic problem in the frequency domain will include 
the solution of the radiation problem by employing the theoretical framework 
developed in this paper for the diffraction wave disturbance. The hydrodynamic 
coupling of the surge-sway-yaw slow-drift displacements will also be addressed 
owing to its relevance to practical applications. 

An analogous effort must be devoted to the study of the slow-drift equation of 
motion and its extensions to all horizontal modes. Efficient numerical simulations in 
real wave spectra must be developed in parallel with the hydrodynamic analysis, in 
order to determine the statistical properties of the slow-drift responses and evaluate 
their sensitivity to ideal and viscous effects. 

Financial support for this study has been provided by the MIT Sea Grant College 
Program, and i t  is greatly appreciated. Many thanks are also directed to Dr John 
Grue of the Department of Mathematics of Oslo University for providing us with the 
drift damping computations obtained from a three-dimensional panel method. 
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